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Abstract: The Urysohn space is a separable complete metric space with two fundamental properties: (a) uni-
versality: every separablemetric space can be isometrically embedded in it; (b) ultrahomogeneity: every �nite
isometry between two �nite subspaces can be extended to an auto-isometry of the whole space. The Urysohn
space is uniquely determined up to isometry within separable metric spaces by these two properties. We in-
troduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a
metric space. In a diversity any �nite set of points is assigned a non-negative value, extending the notion of a
metric which only applies to unordered pairs of points. We construct the unique separable complete diversity
that it is ultrahomogeneous and universal with respect to separable diversities.
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� Introduction
Urysohn [10] in 1927 constructed a remarkable metric space which is now named after him. The Urysohn
space is the unique (up to isometry) separable complete metric space with the following two properties: (a)
universality: all separable metric spaces can be isometrically embedded within it; (b) ultrahomogeneity: any
isometry between two�nite subspaces of theUrysohn space can be extended to an auto-isometry of thewhole
space.

The property of universality is straightforward to grasp, and holds for several separable complete metric
spaces, such as C[�, �]. The property of ultrahomogeneity is less known. Recall that homogeneity of a metric
space means that given any two points x, y in the space, there is an automorphism (or self-isometry) of the
space that maps x to y. Likewise, a space is 2-homogeneous if for every pair of pairs (x�, x�) and (y�, y�) such
that d(x�, x�) = d(y�, y�), there is an automorphism of the space taking x� to y� and x� to y�. For any k ≥ �,
k-homogeneity is de�ned similarly. Ultrahomogeneity just extends this property to any pair of isometric �nite
subsets of the space. An example of a complete separable ultrahomogeneous space is the separable in�nite-
dimensional Hilbert space `�; see Melleray [8]. Urysohn established that the Urysohn space is the unique (up
to isometry) separable metric space satisfying both universality and ultrahomogeneity [8].

Here we construct the analogue of the Urysohn space for diversities, a generalization of the concept of
metric spaces wherein all �nite subsets, and not just pairs of points, are assigned a non-negative value. A
diversity is a pair (X, δ) where X is a set and δ is a function from the �nite subsets of X to R satisfying

(D1) δ(A) ≥ �, and δ(A) = � if and only if |A| ≤ �.
(D2) If B =� ; then δ(A [ B) + δ(B [ C) ≥ δ(A [ C)

for all �nite A, B, C ✓ X. Diversities were introduced in [2]. They form an extension of the concept of a metric
space. Indeed, every diversity has an induced metric, given by d(a, b) = δ({a, b}) for all a, b 2 X. Note also
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that δ is monotonic: A ✓ B implies δ(A) ≤ δ(B). Also δ is subadditive on sets with nonempty intersection:
δ(A [ B) ≤ δ(A) + δ(B) when A \ B =� ; [2, Prop. 2.1]. We say that a diversity (X, δ) is complete if its induced
metric (X, d) is complete [9], and that a diversity is separable if its induced metric is separable.

Our main goal is to construct the diversity analog (U, δU) of the Urysohn metric space. It is determined
uniquely by being universal for separable diversities, and ultrahomogeneous in the sense that isometric �nite
subdiversities are automorphic.

The construction follows the same approach as Katětov’s construction of the Urysohn universal metric
space [7]. Starting with any diversity (X, δ), we denote by E(X) the set of one-point extensions of X. Since
E(X) turns out to not be separable under the natural metric, we instead consider extensions with �nite sup-
port, which provides a separable diversity E(X, ω) in which (X, δ) is naturally embedded. Repeating this pro-
cedure we obtain a nested sequence of separable diversities. The analogue of the Urysohn metric space is
constructed as the completion of the direct limit of all these diversities. Finally we show that this complete
separable diversity has the diversity analogue of Urysohn’s extension property, and hence is universal and
ultrahomogeneous.

Another aspect of metric space theory that has been succesfully carried over to diversities is tight span
theory [5]. The tight span of a metric space (X, d) can be viewed as the set of all minimal members of E(X).
The connections between the tight span of a metric space, the space of all one-point extensions E(X), and
the Urysohn space are explored in [1]. It is shown, for example, that the tight span of the Urysohn space is
not separable. Similar themes have been developed for diversities. In [2] tight span theory was studied for
diversities, where the tight span of a diversity (X, δ) consists of all minimal one-point extensions with an
appropriate diversity, and therefore can be seen as a subset of E(X).

� Background and Preliminaries
Recall from above that any diversity (X, δ) has an induced metric (X, d) where d(a, b) = δ({a, b}) for all
a, b 2 X. Conversely, given any metric space (X, d), consider the diversities that have (X, d) as an induced
metric. Lower andupper boundson thepossible diversities that have (X, d) as the inducedmetric are provided
by the diameter diversity and the Steiner diversity, which we now introduce.

For any metric space (X, d), the corresponding diameter diversity (X, δdiam) is de�ned by

δdiam(A) = max
a,b2A

d(a, b)

for all �nite A ✓ X.
On the other hand, given a metric space (X, d), consider the weighted complete graph (X, E, w) where X

is the set of vertices, E is the set of all unordered pairs of vertices, and w assigns weight d(a, b) to the edge
(a, b). A tree T with vertices in X covers a �nite set A ✓ X if A is a subset of the vertices of T. The Steiner
diversity (X, δSteiner) is de�ned by letting δSteiner(A) be the in�mum, over all trees that cover A, of the total
weight of the tree.

The diameter diversity and the Steiner diversity of ametric space (X, d) are important in that for any other
diversity (X, δ) that has (X, d) as an induced metric space we have

δdiam(A) ≤ δ(A) ≤ δSteiner(A),

for all �nite A ✓ X [3].
The two diversities δdiam and δSteiner are determined purely by their values on pairs of points. We will

show in the last section of this paper that the diversity analogue of the Urysohn metric space is neither a
diameter diversity nor a Steiner diversity of anymetric space. In particular, it is neither the diameter diversity
nor the the Steiner diversity of the Urysohn metric space, even though it has the Urysohn metric space as its
induced metric space.
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� Analogue of Katětov functions
For a metric space (X, d), a Katětov function f : X ! R describes a potential one-point extension of X by a
point z: a metric bd on X [ {z} extending d is given by de�ning bd(x, z) = f (x) for each x 2 X. By [7] we have

f 2 E(X) , 8x8y |f (x) − f (y)| ≤ d(x, y) ≤ f (x) + f (y). (3.1)

E(X) is the set of Katětov functions, which form a metric space with the sup distance d∞(f , g) = supx |f (x) −
g(x)|. Identifying x 2 X with the function y 7! d(x, y) isometrically embeds X into E(X).

LetP�n(X) denote the collection of all �nite subsets of X. Let (X, δ) be a diversity. We will de�ne its exten-
sion E(X) by adapting Katětov’s approach [7].

De�nition 3.1. A function f : P�n(X) ! R is called admissible if for some point z, (X [ {z}, bδ) is a diversity,
where

bδ(A) = δ(A), bδ(A [ {z}) = f (A)

for all �nite A ✓ X. The point z may be in X.

As before, each admissible function on (X, δ) corresponds to a way of extending (X, δ) by one point z. We let
E(X) be the set of all admissible functions on (X, δ). We provide the analogue of (3.1).

Lemma 3.2. A function f : P�n(X) ! R is in E(X) if and only if f satis�es the following:
(i) f (;) = �,
(ii) f (A) ≥ δ(A), for all A,
(iii) f (A [ C) + δ(B [ C) ≥ f (A [ B), for all A, B, and C with C = � ;
(iv) f (A) + f (B) ≥ f (A [ B).

Proof. ): Suppose f is admissible, so bδ is a diversity on X [ {z}, and f (A) = bδ(A [ {z}) for all A 2 P�n(X).
Then bδ({z}) = � implies property (i). Monotonicity of bδ(A) implies f (A) = bδ(A [ {z}) ≥ bδ(A) = δ(A), which is
property (ii). The triangle inequality (D2) for bδ gives, for all C = � ;,

f (A [ C) + δ(B [ C) = bδ(A [ C [ {z}) + bδ(B [ C) ≥ bδ(A [ B [ {z}) = f (A [ B),

which is property (iii). Finally, using the triangle inequality for bδ again gives

f (A) + f (B) = bδ(A [ {z}) + bδ(B [ {z}) ≥ bδ(A [ B [ {z}) = f (A [ B),

which is property (iv).
(:Supposenow that f satis�es the properties (i) through (iv). If f ({x}) = � for some x 2 X, let z = x. Otherwise
let z 2 � X. De�ne bδ on X [ {z} by

bδ(A) = δ(A), bδ(A [ {z}) = f (A)

for all �nite A ✓ X. Note that if z 2 A, we have δ(A) ≤ f (A) ≤ δ(A) + f ({z}) = δ(A) using properties (ii) and
(iii), so that the de�nition is consistent. We need to show that bδ is a diversity function. Since δ is a diversity,
bδ({x}) = � for all x 2 X, and Property (i) gives that bδ({z}) = �. For monotonicity, we need to show bδ(A[{y}) ≥
bδ(A) for four di�erent cases. First, if z is not equal to y and not in A, then it follows from monotonicity of δ.
Secondly, if z = y and z 2 � A then

bδ(A [ {z}) = f (A) ≥ δ(A) = bδ(A)

by property (ii). Thirdly, if z =� y and z 2 A then

bδ(A [ {y}) = f (A \ {z} [ y) ≥ f (A \ {z}) − δ({y}) = bδ(A) − �

by property (iii). Fourthly, if z = y and z 2 A we have A [ {y} = A and hence bδ(A [ {y}) = bδ(A). To show that
bδ is subadditive on intersecting sets we again have several cases. If z 2 � A and z 2 � B then

bδ(A) + bδ(B) = δ(A) + δ(B) ≥ δ(A [ B) = bδ(A [ B).
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If z is in A but not in B then

bδ(A) + bδ(B) = f (A \ {z}) + δ(B) ≥ f (A \ {z} [ B) = bδ(A [ B).

using property (iii). Likewise if z is in B but not in A. Finally, suppose z 2 A \ B. Then

bδ(A) + bδ(B) = f (A \ {z}) + f (B \ {z}) ≥ f ((A [ B) \ {z}) = bδ(A [ B).

Hence bδ is subadditive on intersecting sets. Together with monotonicity this gives the triangle inequality for
diversities.

Analogous to themetric d∞ in Katětov’s construction,wede�ne a diversity functionbδ on E(X). Themotivating
idea for our choice of function is that since every admissible function f corresponds to extending a diversity
by an additional point z, considering admissible functions f�, . . . , fk should require us to extend the diversity
by points z�, . . . , zk simultaneously, giving a newdiversity δE de�ned on X[{z�, . . . , zk}. This diversitymust
coincide with δ on X, and also satisfy that fi(A) = δE(A [ {zi}) for i = �, . . . , k. Once we have �xed a choice
of δE given these constraints, we let

bδ({f�, . . . , fk}) = δE({z�, . . . , zk}).

One choice for bδ that turns out to generalize from the metric case nicely is to let bδ to be the minimum
diversity satisfying the constraints

bδ(A) = δ(A), bδ(A [ {zi}) = fi(A), i = �, . . . , k, (3.2)

for all �nite A ✓ X. We now describe how to obtain an explicit expression for bδ.
We say that a collection of �nite subsets E�, . . . , Ek is connected if, when we partition E�, . . . , Ek into

two non-empty collections of sets, there is an Ei on one side of the partition and an Ej on the other side of
the partition such that Ei \ Ej =� ;. Equivalently, de�ne a graph with v�, . . . , vk corresponding to E�, . . . , Ek
and there is an edge between vi and vj if and only if Ei \ Ej =� ;. Then the collection of sets is connected if and
only if the graph is connected.

To determine bδ, we �rst obtain some lower bounds on bδ({z�, . . . , zk}). Choose any j from �, . . . , k. For
i = � j choose �nite subsets Ai of X. The sets Ai [ {zi}, i =� j together with {z�, . . . , zk} form a connected cover
of the set {zj} [

S
i= �j Ai. So by the triangle inequality for diversities, we should have that

bδ

0

@{zj} [
[

i= �j
Ai

1

A ≤ bδ ({z�, . . . , zk}) +
X

i= �j

bδ(Ai [ {zi}).

Putting this into terms of admissible functions we get

fj

0

@
[

i= �j
Ai

1

A ≤ bδ({f�, . . . , fk}) +
X

i= �j
fi(Ai).

This gives the following lower bound on bδ:

bδ({f�, . . . , fk}) ≥ fj(
[

i= �j
Ai) −

X

i= �j
fi(Ai).

Now this bound must hold for each choice of j and Ai for i =� j, which suggests the following de�nition of bδ
on E(X):

bδ({f�, . . . , fk}) = max
j=�,...,k

sup
A� ,...,Ak

8
<

:fj([i= �jAi) −
X

i= �j
fi(Ai)

9
=

; (3.3)
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where all Ai are �nite subsets of X. We de�ne bδ(;) and bδ({f}) to be zero, for all f 2 E(X). Theorem 3.3 below
shows that this is a diversity on E(X)which extends (X, δ) naturally. The considerations above show that it is
the minimal diversity satisfying conditions (3.2). Note that if k = � we simply have

bδ({f�, f�}) = sup
B �nite

|f�(B) − f�(B)|.

We now make some comparisons between (E(X), bδ) and the tightspan diversity of (X, δ) de�ned in [2].
Points in E(X) correspond to one-point extensions of the diversity (X, δ); points in the tightspan T(X) of X
correspond to minimal one-point extensions of (X, δ). Thus T(X) ✓ E(X). By Lemma 2.6 of [2], the tightspan
diversity δT equals the restriction of bδ to T(X), noting that on T(X) the k di�erent suprema we are taking the
maxima over in (3.3) are all identical, and hence the expression simpli�es.

Theorem 3.3. (E(X), bδ) is a diversity, and (X, δ) is embedded in (E(X), bδ) via the map x ! κx where κx(A) =
δ(A [ {x}).

Proof. First note that by construction we get bδ(;) = � and bδ({f}) = � for any single admissible function f . If f
and g are distinct members of E(X) then |f (B) − g(B)| > � for some �nite B, so bδ({f , g}) > �.

To showmonotonicity of bδ, note that restricting the size of the set of elements of E(X) restricts the number
of functions that can take the �rst position in the supremand and restricts that the corresponding Ai must be
the empty set. So bδ can only decrease when removing elements from a set.

To show that bδ satis�es the triangle inequality, let F and G be two �nite sets of functions in E(X) and let
h be another admissible function. Let arbitrary � > � be given. By the de�nition of bδ there is a collection of
sets Ai and Bi as well an index j such that

bδ(F [ G) − � ≤ fj
⇣
[i= �jAi

[
[kBk

⌘
−
X

i= �j
fi(Ai) −

X

k
gk(Bk).

We can assume, without loss of generality, that fj belongs to one of the admissible functions in F. Adding and
subtracting h([kBk) gives

bδ(F [ G) − � ≤ fj([i= �jAi
[

[kBk) −
X

i= �j
fi(Ai) − h([kBk) + h([kBk) −

X

k
gk(Bk)

≤ bδ(F [ {h}) + bδ(G [ {h}).

This is true for all � > � so the triangle inequality holds.
Finally, since bδ restricted to T(X) is the tight span diversity δT , and, by Theorem 2.8 of [2], δT(κ(A)) = δ(A)

for all A 2 P�n(X). We conclude that bδ(κ(A)) = δ(A) for all A 2 P�n(X).

� Extensions, supports, and E(X, ω)
Recall that adiversity (X, δ) is separable if theunderlying inducedmetric is separable.Analogous to themetric
case, the diversity (E(X), bδ) need not be separable, evenwhen (X, δ) is. To get a separable but su�ciently rich
subspace of E(X) we develop the concepts of support for admissible functions of diversities.

De�nition 4.1. Let (X, δ) be a diversity, let S ✓ X, and let f 2 E(S). We de�ne the extension of f to X as

f XS (A) = inf
(
f (B) +

X

b2B
δ(Ab [ {b}) : �nite B ✓ S,

[

b2B
Ab = A

)
. (4.1)

for �nite A ✓ X.
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The de�nition of f XS can be viewed as a one-point amalgamation. Amalgamation is a concept from algebra that
also occurs inmodel theory. Two structures that share a common substructure are simultaneously embedded
into a larger structure. Here the two structures are diversities. One is (X, δ), and the other is the diversity on
S [ {z} corresponding to the function f , where z is a single point that may or may not be in S. Since S ✓ X,
the two diversities overlap (have a common substructure) on S. In Lemma 4.3 below, we show that f XS is an
admissible function, and hence it corresponds to a diversity on X [ {z} that extends both (X, δ) and the
diversity on S [ {z} corresponding to f . Furthermore, it is the maximal such extension.

De�nition 4.2. Let g be an admissible function on (X, δ) and S ✓ X be nonempty. If g = f XS for some f 2 E(S)
we say that g has support S. We say that f is �nitely supported if it has some �nite support S.

In the following we use g � S to denote the restriction of g to S.

Lemma 4.3. Let (X, δ) be a diversity, let S ✓ X, and let f 2 E(S). Then f XS is an admissible function on X such
that f XS (A) = f (A) for all �nite A ✓ S. Furthermore, it is the unique maximal such extension, in that for any
admissible function g such that g � S = f , we have g(A) ≤ f XS (A) for any �nite set A ✓ X.

Proof. We �rst show that f XS is an admissible function on X by checking conditions (i) through (iv). (i) follows
from the non-negativity of f and δ and setting B to be the empty set. To show (ii) we use property (ii) for f to
see that the expression inside the in�mum for f XS (A) satis�es

f (B) +
X

b2B
δ(Ab [ {b}) ≥ δ(B) +

kX

i=�
δ(Ab [ {b}) ≥ δ(

[

b2B
Ab) = δ(A),

where we have used condition (ii) for f and then the triangle inequality for diversities. For condition (iii), let
C be an arbitrary nonempty set. Then

f XS (A [ C) + δ(B [ C) = inf
D✓S

inf
[Ad=A[C

(
f (D) +

X

d2D
δ(Ad [ {d})

)
+ δ(B [ C).

For each such choice of {Ad}, d 2 D, let e be an element of D such that Ae and C intersect. Then from the
triangle inequality δ(Ae [ {e}) + δ(B [ C) ≥ δ(Ae [ B [ C [ {e}). So

f XS (A [ C) + δ(B [ C) ≥ inf
D✓S

inf
[Ad=A[C

8
<

:f (D) +
X

d= �e
δ(Ad [ {d}) + δ(Ae [ B [ C [ {e})

9
=

;

Now the union of the sets Ad for d =� e togetherwith Ae[B[C is A[B[C. So from the de�nition of f XS (A[B[C)
we get

f XS (A [ C) + δ(B [ C) ≥ f XS (A [ B [ C) ≥ f XS (A [ B)

the last step following from monotonicity of f XS .
For condition (iv) note that for all �nite A, B ✓ X

f XS (A [ B) = inf
D✓S

infS
d2D Gd=A[B

(
f (D) +

X

d2D
δ(Gd [ {d})

)

≤ inf
E,F✓S

inf
[e2EAe=A

inf
[f2FBf=B

8
<

:f (E [ F) +
X

e2E
δ(Ae [ {e}) +

X

f2F
δ(Bf [ {f})

9
=

;

where we have used the fact that the in�mum increases because we restricted it to the case when D is a
union of two sets, one of which indexes a cover of A and the other indexes a cover of B (and we’ve allowed
some double counting of indices). Now since f (E [ F) ≤ f (E) + f (F), we can decompose the in�mum to get
f XS (A [ B) ≤ f XS (A) + f XS (B), as required.
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Next we show that f XS is an extension of f in that f XS (A) = f (A) for all �nite A ✓ S. First note that taking
B = A and Ab = {b} for all b 2 B in the de�nition of f XS gives that f XS (A) ≤ f (A). Secondly, if we use condition
(iii) of admissible functions repeatedly in the expression in the in�mumwe get f XS (A) ≥ f (A), giving the result.

To show that f XS has S as a support, just replace the f with f XS in the de�nition of f XS and see that it does
not change the result, which you can do since f and f XS agree on all subsets of S.

Let f be any admissible function on (X, δ) and let S = X. Repeated use of property (iii) of admissible functions
shows

f (B) +
X

b2B
δ(Ab [ {b}) ≥ f (A)

in equation (4.1), so equality holds for all A. Hence all admissible functions on (X, δ) have X as a support.
We de�ne

E(X, ω) = {f 2 E(X) : f is �nitely supported}

Note that E(X, ω) is a subspace of E(X), and that κx is �nitely supported for each x 2 X since it has support
{x}. So E(X, ω) with diversity bδ is still an extension of the given diversity (X, δ).

We now show that (E(X, ω), bδ) is separable whenever (X, δ) is. Recall that separability of a diversity just
means separability of the induced metric space.

Lemma 4.4. Let (X, δ) be a diversity with |X| = n < ∞. Then E(X) = E(X, ω) is homeomorphic to a closed
subspace of RP�n(X).

Proof. Every function f 2 E(X) can be naturally identi�ed as an element of RP�n(X). E(X) corresponds to
those elements of RP�n(X) with the element satisfying the conditions of an admissible function. Since these
conditions consist of a linear equality and some non-strict linear inequalities, the subset of E(X) is closed in
RP�n(X). We just need to show that the metric induced by bδ is homeomorphic to the Euclidean metric.

Since bδ({f , g}) = supB2P�n(X) |f (B) − g(B)|, which is the `∞ norm, this gives the same topology as the
Euclidean norm in RP�n(X).

Lemma 4.5. Let f be an admissible function on the diversity (X, δ). Let A = {a�, . . . , an} and B = {b�, . . . , bn}
be subsets of X, where δ({ai , bi}) ≤ � for i = �, . . . , n. Then

|f (A) − f (B)| ≤ n�.

Proof. Using property (iii) of admissible functions

f (A) =f ({a�, . . . , an})
≤f ({b�, a�, . . . , an}) + δ({a�, b�})
≤ · · ·

≤f ({b�, . . . , bn}) +
nX

i=�
δ({ai , bi})

=f (B) + n�.

Applying the same argument with B and A reversed gives f (B) ≤ f (A) + n�.

Theorem 4.6. Let (X, δ) be a separable diversity. Then (E(X, ω), bδ) is a separable diversity.

Proof. Let D be a countable dense set in (X, δ). We will show that (E(D, ω), bδD) is separable, and that
(E(D, ω), bδD) can be densely embedded in (E(X, ω), bδX).

To show that (E(D, ω), bδD) is separable, note that it is the union, over all �nite subsets S ✓ D, of the
extensions of (D, δ)with support S. Since each set of extensions is separable (beinghomeomorphic to a closed
subset of a �nite-dimensional Euclidean space by Lemma 4.4), and there are only countably many of them,
(E(D, ω), bδD) is separable.
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To show that (E(D, ω), bδD) is densely embeddable in (E(X, ω), bδX), we de�ne the embedding �. For f 2
E(D, ω) we will de�ne �f = bf : P�n(X) ! R via bf = f XD . From Lemma 4.3 we have that bf is an admissible
function on X, bf is an extension of f , and D is a support of bf .

Next we need to show that for any �nite set F of admissible functions on D

bδX(�F) = bδX(F).

First note that

bδX(�F) =max
j

sup
A� ,...,Ak✓X

8
<

:�fj([i= �jAi) −
X

i= �j
�fi(Ai)

9
=

;

≥max
j

sup
A� ,...,Ak✓D

8
<

:�fj([i= �jAi) −
X

i= �j
�fi(Ai)

9
=

;

=max
j

sup
A� ,...,Ak✓D

8
<

:fj([i= �jAi) −
X

i= �j
fi(Ai)

9
=

;

=bδD(F),

where we have used that D is a subset of X and that �f agrees with f on D. To show conversely that bδX(�F) ≤
bδD(F), we need to show that for any choice of j and �nite A�, . . . , Ak ✓ X, we can �nd �nite B�, . . . , Bk so
that �fj([i= �jBi) is arbitrarily close to �fj([i= �jAi) and �fi(Bi) is arbitrarily close to �fi(Ai) for all i =� j. That such
Bi exist follows from the density of D in X and Lemma 4.5.

We have shown that the map � : E(D, ω) ! E(X, ω) is an embedding. We still need to show that it is a
dense embedding. Let f 2 E(X, ω). Suppose f has �nite support S, with |S| = n and elements s�, . . . , sn. For
any � > �, �nd a T ✓ D with |T| = n elements t�, . . . , tn such that for any subindices i�, . . . , im of �, . . . , n
we have

|f ({ti� , . . . , tim}) − f ({si� , . . . , sim})| < �.

(This is possible by Lemma 4.5.) Now f restricted to T is still an admissible function. We want to extend it to
all of D. For any �nite subset A of D, de�ne g = (f � T)DT . By Lemma 4.3, g is an admissible function on (D, δ),
it is an extension of f � T, and it has support T. Now we let bg = �g be the image of g under the embedding.
We need to show that bg is close to f .

The functions bg, f : P�n(X) ! R agree on subsets of T, but bg is supported on T and f is supported on
S. Let A be an arbitrary �nite subset of X. Since T is �nite, we have for some B ✓ T, B = {ti� , . . . , tim} and
{A}b2B with [b2BAb = A

bg(A) ≥f (B) +
X

b2B
δ(Ab [ {b}) − �

≥f (C) − � +
X

c2C
δ(Ac [ {c}) − �

≥f (A) − ��

where C ⇢ S and C = {si� , . . . , sim}. A similar argument starting with f (A) gives f (A) ≤ bg(A)−��. Together we
have |bg(A)−f (A)| ≤ �� for all �nite A ✓ X and so bδX({bg, f}) ≤ �� can bemade arbitrarily small as required.

� Construction of the diversity analogue of the Urysohn metric
space.

Here we de�ne the diversity analogue of the Urysohn metric space. We show that it is the unique universal
Polish diversity. We also show that it is ultrahomogeneous.
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In what follows we will need the following lemma. For each k ≥ �, let δk be the function that sends
(a�, . . . , ak) to δ({a�, . . . , ak}).

Proposition 5.1. Let (X, δ) be a diversity. For each k, the function δk is 1-Lipschitz in each argument.

Proof. Consider varying the ith argument of δk from xi to x0i. We know from the triangle inequality that

δk(x�, . . . , xi , . . . , xk) =δ({x�, . . . , xi , . . . , xk})
≤δ({x�, . . . , x0i , . . . , xk}) + δ({xi , x0i})
=δk(x�, . . . , x0i , . . . , xk) + d(xi , x0i).

Similarly, δk(x�, . . . , x0i , . . . , xk) ≤ δk(x�, . . . , xi , . . . , xk) + d(xi , x0i). So

|δk(x�, . . . , xi , . . . , xk) − δk(x�, . . . , x0i , . . . , xk)| ≤ d(xi , x0i)

as required.

De�nition 5.2. A diversity (X, δ) has the extension property if for any �nite subset F of X and any admissible
function f on F, there is x 2 X such that f (A) = δ(A [ {x}) for any �nite A ✓ F.

The extension property on metric spaces is also known as the Urysohn property [6].

De�nition 5.3. We say a diversity is Polish if its inducedmetric space is Polish, i.e. it is separable and complete.

Lemma 5.4. Let (X, δX) and (Y , δY ) be diversities where X is separable with a dense subset DX and Y is com-
plete. Any isomorphism from DX into Y can be extended to an isomorphism from X into Y .

Proof. Let ϕ be an isomorphism from DX into Y. Since ϕ preserves the diversity it also preserves the induced
metrics between the two sets and is hence a uniformly continuous map. This means we can extend it to a
uniformly continuous function ϕ̄ between X and Y. To show that ϕ̄ is an isomorphism, let A ⇢ X be an
arbitrary �nite set, with A = {a�, . . . , an}. For each k = �, . . . , n, let a�k , a

�
k , a

�
k , . . . be a sequence in DX such

that with aik ! ak as i ! ∞. We de�ne Ai = {ai�, ai�, . . . , ain}.

δY (ϕ̄(A)) =δY (ϕ̄(limi Ai))

=δY (limi ϕ̄(Ai))

= lim
i
δY (ϕ̄(Ai))

= lim
i
δX(Ai)

=δX(limi Ai) = δX(A).

where we have used the uniform continuity of δX and δY , by Proposition 5.1.

Theorem 5.5. Let (X, δX) and (Y , δY ) be Polish diversities with the extension property. Then (X, δX) and (Y , δY )
are isomorphic.

Proof. Wemostly follow theproof of [6, Thm. 1.2.5]. Let {x�, x�, x�, . . .}beadense set inX and let {y�, y�, y�, . . .}
be a dense set in Y. We will de�ne a diversity isomorphism between these dense sets and then extend it to
the whole space.

We will construct a sequence of partial diversity isomorphisms ϕ�, ϕ�, ϕ�, . . . Let ϕ� be de�ned on the
single point x� so that ϕ�(x�) = y�.

At stage n > �, suppose thatϕn−� hasbeende�ned so that {x�, . . . , xn−�} ✓ dom(ϕn−�)and {y�, . . . , yn−�} ✓
range(ϕn−�). If xn 2 dom(ϕn−�) then we let ϕ0 = ϕn−�. Otherwise, let F = range(ϕn−�) and consider the ad-
missible function on F de�ned by

f (A) = δX(ϕ−�
n−�(A) [ {xn})
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for �nite A ✓ F. By the extension property of Y there is y 2 Y so that

δY (A [ {y}) = f (A) = δX(ϕ−�
n−�(A) [ {xn}).

We extend ϕn−� to ϕ0 by de�ning ϕ0(xn) = y. Now if yn 2 range(ϕ0) then we let ϕn = ϕ0 and go on to the next
stage. Otherwise apply the above argument toϕ0−� and use the extension property of X to obtain an extension
of ϕ0. De�ne ϕn to be this extension. We have thus �nished the de�nition of ϕn. Let ϕ be the union of all ϕn
we have de�ned. Then it has the required properties.

Finally we use Lemma 5.4 to extend ϕ between {x�, x�, x�, . . .} and {y�, y�, y�, . . .} to a isomorphism
between X and Y.

The completion of a diversity is de�ned in [9]: we take the completion of the diversity’s inducedmetric space,
and then extend the original diversity function to this larger set using continuity.

Following [8] we de�ne the following weakened version of the extension property.

De�nition 5.6. A diversity (X, δ) has the approximate extension property if for any �nite subset F of X, any
admissible function f on F, and any � > �, there is an x 2 X such that |δ(A [ {x}) − f (A)| ≤ � for any A ✓ F.

Lemma 5.7. If a separable diversity has the approximate extension property, then its completion has the ap-
proximate extension property.

Proof. Let (X, δ) be a diversity that is the completion of dense subset D, where (D, δ) has the approximate
extension property. Let F be a �nite subset of X, f 2 E(F), and � > � be given. We need to �nd a point y 2 X
such that |δ(A [ {y}) − f (A)| ≤ � for all A ✓ F.

Order all non-empty subsets of F, A�, . . . , A�n−� so that if Aj ✓ Ai then j ≥ i. Let �� = �/�(�n + n). De�ne
a bijective map � from F to �F ✓ D so that for all nonempty A ✓ F, |δ(�A) − δ(A)| < ��, which is possible by
Proposition 5.1.

De�ne g : P�n(�F) ! R by g(;) = � and

g(�Ai) = f (Ai) + �Ai , for i = �, . . . , �n − �,

where �Ai = i��. Note that g is monotonic by construction. We claim that g 2 E(�F).
To show g 2 E(�F)we need to verify the four conditions of Lemma 3.2. Condition (i) (g(;) = �) follows by

de�nition. To obtain condition (ii), note that for non-empty A, g(�A) = f (A)+�A ≥ δ(A)+�A ≥ δ(�A)−��+�A ≥
δ(�A). For condition (iii), we �rst observe that for any admissible function f on F and C = � ;we have from the
triangle inequality

f (A [ C) + δ(B [ C) = f ((A [ C) [ C) + δ(B [ C) ≥ f (A [ B [ C).

So, given A, B, C ✓ F, with C = � ;,

g(�A [ �C) + δ(�B [ �C) ≥f (A [ C) + �A[C + δ(B [ C) − ��
≥f (A [ B [ C) + �A[C − ��
=g(�A [ �B [ �C) − �A[B[C + �A[C − ��
≥g(�A [ �B)

where we use the fact that g is monotonic and that A [ B [ C is later than A [ C on the list of subsets, and so
�A[B[C + �� ≤ �A[C. Now for condition (iv) we have

g(�A) + g(�B) ≥f (A) + �A + f (B) + �B
≥f (A [ B) + �A + �B
≥g(�A [ �B) − �A[B + �A + �B
≥g(�A [ �B)
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since �A[B ≤ �A.
So g is admissible on �F. By the approximate extension property of (D, δ), there is a point y such that

|g(�A) − δ(�A [ {y})| ≤ �/� for all A ✓ F.
Now for any A ✓ F

|f (A) − δ(A [ {y})| ≤|f (A) − g(�A)| + |g(�A) − δ(�A [ {y})| + |δ(�A [ {y}) − δ(A [ {y})|
≤�A + �/� + n�� ≤ �n�� + �/� + n�� ≤ �

as required.

Lemma 5.8. Any complete diversity with the approximate extension property has the extension property.

Proof. Our proof follows that of the metric case in Theorem 3.4 of [8] and Theorem 1.2.7 of [6].
Let (X, δ) be a complete diversity with the approximate extension property. Let �nite F ✓ X be given, and

let f 2 E(F). It su�ces to show there is a sequence z�, z�, . . . in X such that for all p, |δ(A[{zp})− f (A)| ≤ �−p

for all A ✓ F and δ({zp , zp+�}) ≤ ��−p. Since X is complete and f is continuous, the sequence will have a limit
z 2 X such that δ(A [ {z}) = f (A) for all A ✓ F.

By the approximate extension property of (X, δ) we can de�ne z�. To use induction, suppose we have
z�, z�, . . . , zp satisfying the conditions and we need to specify zp+�. Let fp 2 E(F) be de�ned by fp(A) =
δ(A [ {zp}) for A ✓ F. Note that for all A

|fp(A) − f (A)| = |δ(A [ {zp}) − f (A)| ≤ �−p .

So bδ({fp , f}) ≤ �−p.
Now let gp be de�ned on F [ {zp} by gp(A) = f (A), gp(A [ {zp}) = bδ(A [ {fp , f}). This is in an admissible

function on F [ {zp} because it is realized by the points F [ {fp , f} in E(F). So by the approximate extension
property there is a z 2 X that realizes gp with error at most �−(p+�). In other words

|δ(A [ {z}) − gp(A)| ≤ �−(p+�), |δ(A [ {z, zp}) − gp(A [ {zp})| ≤ �−(p+�).

The �rst inequality shows that |δ(A [ {z}) − f (A)| ≤ �−(p+�) and the second inequality shows that, choosing
A = ;

δ({zp , z}) ≤ gp({zp}) + �−(p+�) = bδ({fp , f}) + �−(p+�) ≤ �−p + �−(p+�) ≤ �−p+�.

Now let zp+� = z.

Theorem 5.9. If (X, δ) is a separable diversity with the extension property then its completion also has the
extension property.

Proof. Since (X, δ) has the extension property, it certainly has the approximate extension property. By
Lemma 5.7 the completion of (X, δ) has the approximate extension property. Then by Lemma 5.8 the comple-
tion of (X, δ) has the extension property, being complete.

We now work towards de�ning a complete separable diversity with the extension property. We start with
a given diversity (X, δ). We let X� = X, δ� = δ. Now, for n > � we inductively de�ne (Xn , δn) by letting
Xn = E(Xn−�, ω)with the diversity δn = bδn−�. We de�ne (Xω , δω) to be the union of all these diversities, which
is well-de�ned because each (Xn , δn) is embedded in (Xn+�, δn+�).

Theorem 5.10. For any diversity (X, δ) the diversity (Xω , δω) has the extension property.

Proof. Let F be a �nite subset of Xω, and let f be an admissible function on F. F must be contained in Xn for
some n. By construction, there is some x 2 Xn+� such that f (A) = δ(A [ {x}) for all A ✓ F. So there is such an
x in Xω.
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We de�ne the diversity (U, δU) to be the completion of (Xω , δω) when (X, δ) is the trivial diversity of a single
point. By Theorem 5.9, (U, δU) also has the extension property.

We say that a Polish diversity is universal if any separable diversity is isomorphic to a subset it.

Theorem 5.11. (U, δU) is a universal Polish diversity.

Proof. Let (X, δ) be an arbitrary separable diversity. We construct a sequence of partial isomorphisms whose
union is the desired isomorphism. Let x�, x�, x�, . . . be a dense sequence in X. Let y be an arbitrary point inU.
Letϕ� be de�ned on {x�} byϕ�(x�) = y. Now suppose thatwe have an isomorphismϕn from {x�, x�, . . . , xn}
into U, with ϕ(xi) = yi for i = �, . . . , n. De�ne the admissible function on {y�, . . . , yn} for �nite subset A by
f (A) = δ(ϕ−�

n (A) [ xn+�). By the extension property, there is a point yn+� in U such that δ(ϕ−�
n (A) [ xn+�) =

f (A) = δU(A[ yn+�). De�ne ϕn+� by extending ϕn with one point with ϕn+�(xn+�) = yn+�. Now take the union
of all of the ϕn to obtain an isomorphism between {x�, x�, x�, . . .} and a subset of U. By Lemma 5.4 this
isomorphism can be extended to all of X.

A Polish diversity (X, δ) is ultrahomogeneous if given any two isomorphic �nite subsets A, A0 ✓ X, and any
isomorphism ϕ : A ! A0, there is an isomorphism of (X, δ) to itself that extends ϕ.

Theorem 5.12. (U, δU) is ultrahomogeneous.

Proof. This proof follows the same plan as Theorem 5.5. Let A, A0 be two isomorphic subsets of U, with iso-
morphism ϕ between them. Let {x�, x�, . . .} be a dense subset ofU \A and let {y�, y�, . . .} be a dense subset
of U \ A0. Let ϕ� = ϕ. Suppose we have de�ned ϕn−� so that it is an isomorphism and A [ {x�, . . . , xn−�} ✓
dom(ϕn−�) and A0 [ {y�, . . . , yn−�} ✓ range(ϕn−�). Following the proof of Theorem 5.5 yields a suitable ϕn.
Taking the union of these ϕn and applying Lemma 5.4 gives the desired isomorphism from U to itself that is
an extension of ϕ.

Theorem 5.13. Any ultrahomogeneous, universal Polish diversity has the extension property, and is thus iso-
morphic to (U, δU).

Proof. Let (X, δ) be an ultrahomogeneous, universal Polish diversity. Let F be a �nite subset of X and let f be
an admissible function on F. So we can de�ne a diversity on F[{z} for some z such that f (A) = δ(A[{z}) for
A ✓ F. Since (X, δ) is universal, there is an embedding ϕ taking F [ {z} into X. Let F0 = ϕ(F). Since ϕ is an
isomorphism from F to F0, there is an isomorphism ϕ0 of the whole space that extends ϕ. Consider the point
ϕ0−�(z). It satis�es the property that δ(A [ ϕ0−�(z)) = f (A) for all A ✓ F.

� The relationship between (U, δU) and the Urysohn metric space
We denote the Urysohn metric space by (Um, d). The induced metric space of the diversity (U, δU) in, in fact,
isometric to (Um, d). We will show that (U, δU) is neither a diameter diversity nor a Steiner diversity. These
notions were recalled at the beginning of Section 2.

Proposition 6.1. 1. The metric space induced by (U, δU) is isometric to (Um, d).
2. (U, δU) is not a diameter diversity.
3. (U, δU) is not a Steiner diversity.

Proof. 1. Recall that (Um, d) is up to isometry the unique separable complete metric space with the metric
extension property. Since (U, δU) is a separable complete diversity, its inducedmetric space is also separable
and complete.

It remains to show that the induced metric space has the metric extension property, which for U states
that for any �nite A ✓ U and any f : U ! R satisfying (3.1) at the beginning of Section 3 there is a z 2 U
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such that d(z, a) = f (a) for all a 2 A. Such a function f corresponds to a metric space (A [ {z}, bd), in that
f (a) = bd(a, z) for all a 2 A, where bd restricted to A coincides with the induced metric restricted to A. De�ne
a diversity bδ on A [ {z} by letting bδ(B) = δU(B) and

bδ(B [ {z}) = δU(B) + min
b2B

bd(b, z)

for B ✓ A. Then (A [ {z}, bδ) is a one-point extension of (A, δU). Since (U, δU) has the (diversity) extension
property, z can be identi�ed with a point in U. For any a 2 A,

d(a, z) = δU({a, z}) = bδ({a, z}) = bd(a, z) = f (a)

as required. So the metric induced onU has the extension property, and therefore is isometric to the Urysohn
metric space.

2. Consider the diversity on three points given by X = {a, b, c}, δ(a, b) = δ(a, c) = δ(b, c) = � and
δ(a, b, c) = �. (X, δ) is not a diameter diversity, since in that case we would have δ(a, b, c) = �. Since (U, δU)
is universal, and (X, δ) is separable and complete, there is a subset of U that is isometric to (X, δ). Subsets of
diameter diversities are still diameter diversities, so (U, δU) is not a diameter diversity.

3. Consider the diversity on three points given by X = {a, b, c}, δ(a, b) = δ(a, c) = δ(b, c) = � and
δ(a, b, c) = �. Since (U, δU) is universal and (X, δ) is separable and complete, we can identify (X, δ) with a
subset ofU. Suppose that (U, δU) is a Steiner diversity. Thenwe can�nd trees inU that cover (a, b, c) andhave
total weight arbitrarily close to δ(a, b, c) = �. Supposewe have a treewith total weight less than 1.25, covering
{a, b, c}. We can assume that the tree has leaves a, b, c and a single internal node z, which is possibly not
distinct from a, b, c. Let the branches of the tree have lengths α, β, �, corresponding to the leaves a, b, c
respectively. Now we have

α + β ≥ �, β + � ≥ �, α + � ≥ �, α + β + � < �.��.

Summing the �rst three inequalities and dividing by 2 gives α + β + � ≥ �/� which contradicts the �nal
inequality. Therefore, (U, δU) is not a Steiner diversity.

� Questions
Many questions that have been considered for the Urysohn metric space also make sense for the Urysohn
diversity. For instance, it is easy to show that (U, δU) is compact homogeneous, namely, any isomorphic com-
pact subdiversities are automorphic. This follows the construction in Melleray [8, Section 4.5] for the metric
case. It would be worthwhile to study the isometry group of (U, δU) along the lines of the results surveyed
in [8, Section 4.5].

Another interesting avenue to explore is determining universal and ultrahomogeneous structures for re-
stricted classes of diversities, as is described for metric spaces in [11]. For example, for S ✓ [�,∞) letMS be
the class of all �nitemetric spaces with distances taking values in S. One can ask for each Swhether there is a
metric space that is universal and ultrahomogeneouswith respect tometrics inMS. For example, if S = [�,∞)
then the corresponding structure is the Urysohn space. Delhommé, La�amme, Pouzet, and Sauer [4] give a
complete characterization of which sets S admit such a structure. These questions have natural analogues
for diversities.
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We thank Andreas Halback for pointing out a problem with the 
first paragaph below.
It is not obvious how to adapt Melleray’s construction, and we 
don’t know whether U is compact homogeneous.
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